
www.manaraa.com

UPMAIL Technical Report No. 42Integrating ComplexData Structures in PrologJonas Barklund & H�akan MillrothUppsala Programming Methodology and Arti�cial Intelligence LaboratoryComputing Science Dept., Uppsala UniversityP. O. Box 520, S-751 20 Uppsala, Sweden+46{18{18 25 00Electronic mail: JONAS@AIDA.UU.SE, HAKANM@AIDA.UU.SEAbstract.Computer Science has produced several data structures and algorithms on them to e�ciently solvecomputational problems. Some algorithms require destructive operations for their e�cient implementationor have other properties which make them di�cult to implement e�ciently in Prolog. If they are to beintroduced in Prolog, these data structures and algorithms must be implemented at a lower level.We investigate how such data structures, possibly with a complicated internal representation, can benaturally incorporated as �rst class terms in Prolog. Implementation problems are discussed for a numberof alternative solutions. Four examples of data structures: (hash) tables, arrays, characters, and strings areexamined individually.An earlier version of this paper was presented at the 1987 Symposium on Logic Programming in SanFrancisco.The research reported herein was supported by the National Swedish Board for Technical Development (STU).

www.manaraa.com

1. PROBLEMEdinburgh Prolog is a small and elegant language, providing few but general constructs. For example, theonly data are general terms: atoms and structures (with a little sugar to make certain binary structures looklike lists).The disadvantage is that although this is su�cient to represent any other data structure, all operationson these data structures may not be very e�cient. In particular, modifying large data structures is veryexpensive. One remedy for this, which is the approach taken in some LISP systems (e.g., Common Lisp[Steele 84]) is to add new primitive data structures, such as arrays, strings, and hash tables, and built-inoperations on them.Unfortunately, doing this with Edinburgh Prolog would destroy the simplicity and uniformity of thelanguage. Indeed, \rich" languages such as Common Lisp and Ada have been accused of becoming too largeand incomprehensible.The paper attempts to solve this problem. We will propose a number of data structures, primitiveoperations on them (which could not have been e�ciently coded in Prolog) and various ways of integratingthem in Edinburgh Prolog without destroying its uniformity.Tricia is an implementation of Prolog on the DEC-2060 computer, developed at Uppsala University. Itis based on a modi�ed WAM [Carlsson 86; Warren 83] and the built-in predicates are roughly a superset ofEdinburgh Prolog. Some of the constructs in this paper are implemented in version 0:63 of Tricia [Barklundet al. 86], all of them are intended to be implemented in version 1:0.By \Edinburgh Prolog" we mean the language and semantics of Prolog described in [Bowen 81], not tothe actual implementation developed at Edinburgh University. Below we will call this simply \Prolog".2. HAIRY DATA STRUCTURESIn Prolog there are only two kinds of data: atoms (symbols) and structures. Structures are usually imple-mented as sequences of memory words where the �rst word contains a reference to the functor of the termand the following words contain the arguments of the structure. The only exceptions are structures withthe functor '.'/2 (lists) whose functors are implicit. This format allows direct access to arguments of thestructure and makes it cheap to access the arguments sequentially, e.g., when unifying terms. It does notallow cheap non-destructive modi�cation of arguments which requires copying the whole structure. However,we can imagine other ways of implementing some structures for the bene�t of other operations.In [Eriksson & Rayner 84] and [Barklund & Millroth 87] implementation methods are given for addingarrays and hash tables to Prolog. The key idea is a way to hide the side e�ects which are necessary fore�cient updating of structures. This is accomplished by constructing exception chains for older versionsof the data structure. One consequence of this is that the internal representation of certain arrays andhash tables can be quite complicated. In the rest of this paper, ordinary structures stands for structuresimplemented the normal way as described in the previous paragraph and hairy structures stands for othernon-straight-forward implementations of structures.3. TERMS IN PROLOGIn Prolog, all terms are expected to1. have a syntax (both for input and output) on the form atom or functor(arg1; : : : ; argk) (although somesugared syntax may also exist),2. be composable and decomposable by the built-in predicates =../2, functor/3 and arg/3 (referred tobelow as the structure predicates) and3. unify with terms being syntactically equivalent or which can be made syntactically equivalent by in-stantiating variables in either or both terms.If hairy structures are added to Prolog, there are at least three ways to do it, as described below.3.1. Second-class TermsLet hairy structures be \second-class" terms without syntax which can only be manipulated through built-inpredicates. This is easiest to implement but has several disadvantages.Firstly, the uniformity and simplicity of Prolog is broken. This is not only a philosophical point but italso complicates understanding of the language for novice programmers.1

www.manaraa.com

Secondly, imagine as an example a predicate which tests if a term is ground. This can be easily donehaving base cases for variables and atoms and a recursive case for structures using =../2. With second-classterms it would be necessary to add one case for each hairy structure.Thirdly, when debugging programs it helps if arrays, hash tables etc. can be in- and output.3.2. Abstract Data StructuresIt has been suggested that using types and abstract data could be a way to handle the situation. Theidea behind abstract data structures [Allen 78] is to provide (functions or relations acting as) recognizers,selectors, constructors and predicates on a data structure without revealing its actual representation. Thisis a beautiful idea but it stands in conict with the principle of Prolog that all terms have a syntax.After a major restructuring of the way terms are supposed to behave, it is possible that abstract datastructures can �t nicely in Prolog.3.3. Conservative extensionThe third way is to require that hairy data structures meet all requirements for �rst-class terms in Prolog.The rest of the paper discusses how this can be done and at which cost.4. LIMITED REPRESENTATION OF TERMSSome hairy structures are only limited representations of terms in the sense that the implementation requirescertain components of the terms to be instantiated or even ground. For example, it is possible to imaginestrings where some characters are replaced by uninstantiated variables. Such strings cannot be implementedas packed arrays of characters, which is the common technique.Hairy structures are either created by specialized built-in predicates or by structure predicates. Whena hairy structure is created by a built-in predicate the problem can be handled by documenting that certainarguments of the predicate must be ground.It is necessary to decide for structure predicates what should happen if an attempt is made to constructa hairy structure where some critical component is uninstantiated and what should happen if the componentlater becomes instantiated. Four possibilities follow below.4.1. Construction FailsThe easiest solution is to let such attempts fail or generate an exception. This is easy to implement butmakes Prolog even more incomplete. For experienced programmers this may in practice be only a smallinconvenience.4.2. Construction SuspendsIn an implementation of Prolog with primitives for delaying goals until certain terms become instantiatedor ground, the structure predicate could suspend until the critical component becomes instantiated. If thisapproach is taken, there are other built-in predicates which should have the same behaviour and thosemodi�cations to Prolog are beyond the scope of this paper.4.3. An Ordinary Structure is CreatedThe previous approaches share the advantage that terms implemented as ordinary structures and termsimplemented as hairy structures form mutually disjunct sets. If it is acceptable that two equivalent termsmay have di�erent internal representations, then a structure predicate can create an ordinary structure whenthe requirements for a hairy structure are not ful�lled. The next chapter discusses what problems will arisefrom this.4.4. Always Create Ordinary StructuresAgain assuming that di�erent representations of equivalent terms are acceptable, structure predicates canalways create ordinary structures, even when it would have been possible to create a hairy structure instead.This simpli�es the structure predicates but of course a�ects performance when the created structure is used.2

www.manaraa.com

5. DIFFERENT REPRESENTATIONS OF EQUAL STRUCTURESWhat happens if there are di�erent representations of equal structures? Let us �rst state in which parts ofa Prolog system terms are actually composed or decomposed.1. The general uni�cation routine.2. Open-coded uni�cation in compiled code.3. Structure predicates.4. Built-in predicates on certain terms.5. Interning of atoms.We will cover each of these separately.5.1. General Uni�cationThe general uni�cation routine must be augmented with three new cases for each hairy structure type (onecase for unifying two hairy structures and two cases for unifying a hairy structure with an ordinary structure).For example, if an attempt is made to unify a string and an ordinary structure, the ordinary structureshould be inspected to �nd out if it could possibly be an alternative representation of a string. If this isthe case, both the string and the ordinary structure must be traversed to unify their components. An easybut not so e�cient solution in this situation is of course to convert the string to its corresponding ordinarystructure and then call the general uni�cation routine again with the two ordinary structures.5.2. Open-coded Uni�cationEvery sensible representation of a hairy structure as an ordinary structure will reserve either a �nite numberof functors or all functors with a certain name (but varying arities). When the compiler �nds a structurewith such a functor in the head of a clause it cannot generate a get_structure instruction (we assumethe implementation is based on some abstract machine similar to WAM). This is because at runtime thepredicate may be called with a hairy structure as argument. We propose four alternative ways of extendingWAM to cope with hairy structures.5.2.1. Failure. All attempts to compose or decompose a hairy structure or its corresponding ordinarystructure fail or generate an exception. This is in accordance with the behavior of structure predicatesdescribed in section 4.1.5.2.2. Copying Hairy Structures. For each hairy structure foo a new instruction get_foo Xi is introduced.At runtime it dereferences Xi and takes one of the following actions:1. If Xi dereferences to a variable then get_foo Xi is equivalent to get_structure F,Xi where F is theappropriate reserved functor, entering write mode. This will always create an ordinary structure, inanalogy with the behavior of structure predicates described in section 4.4.2. If Xi dereferences to an ordinary structure with a functor F which is one of the reserved functors thenget_foo Xi should be equivalent to get_structure F,Xi, setting up the S register and entering readmode.3. If Xi dereferences to a hairy foo-structure then a corresponding ordinary structure is created on theheap, the S-register is set to point to its �rst argument and read-mode is entered.4. If Xi dereferences to something else backtracking is initiated.The copying of structures in case 3 is admittedly not very elegant but it has the advantage that the compilercan generate unify-instructions following the get_foo-instruction just as after a get_structure-instruction.5.2.3. Loading Arguments in Variables. For each hairy type of structure foo whose corresponding ordinarystructure has a functor F and k arguments, an instruction get_foo Xi,Xj1,...,Xjk is introduced. If Xidereferences to a variable or an ordinary structure, this instruction should be equivalent to the followingsequence of WAM-instructionsget_structure F,Xiunify_variable Xj1...unify_variable Xjk. 3

www.manaraa.com

If Xi dereferences to a hairy foo-structure this instruction should be equivalent to creating a correspondingordinary structure on the heap, placing a pointer to this structure in Xi and then executing the sequenceof instructions above. This has the advantage that for many hairy structures the corresponding ordinarystructure does not have to be created. The disadvantage is that it may be impractical to implement instruc-tions with a large number of arguments using a byte-code emulator. Also, this may be a waste of temporaryregisters.5.2.4. Do Not Open-code Uni�cation. The simplest way to handle open-coded uni�cation is not open-coding uni�cation of a source term which may unify with a hairy structure. For example, if in the ithargument position of some clause appears a term bar(a,Xj,c) which may unify with a hairy structure, it isnot compiled toget_structure bar/3,Xiunify_constant aunify_value Xj % or unify_variable Xj if �rst occurrence of Xjunify_constant bbut rather toput_structure bar/3,Xiunify_constant aunify_value Xjunify_constant cget_value Xi,Xjthus creating an ordinary term and relying on the general uni�cation routine to handle the case when Xiis a hairy structure. In good programs, head uni�cation of hairy structures will be very rare so we do notthink this will a�ect space or time performance signi�cantly.5.3. Structure PredicatesIn chapter 4 above we discuss di�erent approaches to how structure predicates should compose possibly hairystructures. Let us now see how hairy structures can be decomposed.The predicate functor/3 is probably quite trivial to implement since it only involves �nding the functorof the corresponding ordinary structure. arg/3 and in particular =../2 may be more di�cult to implement.For some hairy structures (e.g., arrays which are similar to ordinary structures) accessing componentsby arg/3 will be almost as easy as for ordinary structures. In general, however, arg/3 will be as di�cult as=../2.The simplest general solution is of course to create a corresponding ordinary structure and then de-compose it. On the other hand, we think that for most hairy structures it is not di�cult to write primitiveroutines for handling them. arg/3 and =../2 would then only have to dispatch to the correct routine.5.4. Built-in PredicatesFor every primitive built-in predicate operating on some hairy structure (e.g., modifying a hash table) itis necessary to de�ne an equivalent operation on the corresponding ordinary structures. If correspondingordinary structures are reasonably well chosen it will be easy to de�ne these operations in Prolog withbad but acceptable e�ciency. For an example of how this is done for hairy hash tables, see [Barklund &Millroth 87].5.5. Interning of AtomsIf some hairy structures correspond to atoms (such as empty_ht below in section 6.1.3) they may have tobe recognised when atoms are interned. In this case it is obvious that predicates on atoms must recognisethem and treat them as atoms. Alternatively the built-in predicates on hairy structures (not only the Prologequivalents of the predicates mentioned in the previous section) should handle these atoms. The latterapproach is probably easiest to implement.6. FOUR EXAMPLES OF HAIRY STRUCTURESLogical terms as provided in Prolog are a very elegant data type which quite easily can be used to representany other data type. Programs operating on small data structures usually have no problem representing their4

www.manaraa.com

data e�ciently, simple lists and trees work �ne in most cases. When programs need large data structures,however, the programmer often �nds that general logical terms are too ine�cient for the particular problem.The key point is that it is easy in Prolog to say that two terms T1 and T2 have one or a few components incommon, this can be done by, e.g., arg(I,T1,X), arg(I,T2,X),but it is very di�cult to say that two terms have all elements except one or a few in common. In imperativelanguages this is solved by destructively changing one term to obtain the other, causing a side e�ect of thecomputation. The most important hairy structures are proposed to overcome this problem.6.1. TablesWe de�ne a table to be a term which pairs together ground keys with values. (In Prolog a table canalternatively be represented by a set of binary clauses. Updating such tables requires manipulating the database and we do not consider them here.)6.1.1. Motivation. Tables are very common in Prolog programs. Small tables are often implemented asA-lists, larger tables as trees. If accessing a table is much more frequent than adding to or deleting fromit, it is realistic to implement the table e�ciently in Edinburgh Prolog as a k-order tree structure. Sincedestructive updating of the tree is impossible, insertion or deletion of an element in a tree with n nodesrequires allocation of between logk(n) and n nodes, depending on how well the tree is balanced. Thisbecomes expensive when the tables get large, as they often do.Sometimes a Prolog coding trick is employed: representing the table by a tree whose fringe consists ofuninstantiated variables, to facilitate the addition (but not replacement or deletion) of nodes. This is elegantfor certain purposes [Warren 80], but is generally awkward and programs using such tables often need to usemeta-logical concepts.Hashing is another e�cient implementationmethod for tables. If hash tables are represented by ordinaryProlog structures, programs for accessing values by keys and adding or removing key-value pairs can bewritten in Prolog. Unfortunately, if addition and deletion of key-value pairs is to be implemented e�ciently,destructive modi�cation of the terms becomes necessary. If the implementation of hash tables is made belowthe Prolog user level, it is possible to let insertion and deletion invisibly use destructive operations, hidingtheir side e�ects. From the outside the operations will appear to be completely free of side e�ects. In thisway it is possible to let most insertions and deletions allocate an amount of memory equivalent to only onetree node.We consider an e�cient and clean implementation of tables in Prolog so important that it motivatesextending Prolog with hairy structures.6.1.2. Implementation. See [Barklund & Millroth 87] for an implementation method for hash tables inProlog.6.1.3. Integration. Finding a suitable correspondence between hash tables and ordinary structures is dif-�cult, since the components of a hash table have no meaningful observable order even in the actual hairystructure. Also the components must be pairs of keys and values where the keys are ground.One approach is letting a hash table containing n pairs of keys and values correspond to a list[k1-v1,k2-v2,...,kn-vn],where for every i, ki is ground and ki@<ki+1 (@</2 is some total ordering on ground terms). The orderingcriterion is necessary to give a unique syntax for a hash table. The syntax for hash tables is not likely to beused very often so a clumsy syntax may be acceptable. Incidentally, to obtain a hash table without worryingabout the order of the keys, a goal keysort([k1-v1,...,kn-vn],T)could be used.The problem with this correspondence (and indeed all correspondences between hairy structures andlists) is that lists are used in very many places in a Prolog system. It would be di�cult and expensive toallow hash tables or other hairy structures to appear in every place where a list is expected. It would also5

www.manaraa.com

be very expensive to create a list, checking if the list could actually be implemented as a hairy structure. Inother words, the functor '.'/2 is already reserved for other purposes.(This can be seen as an argument for structure-based Prolog against list-based Prolog, where the onlynon-atomic �rst-class terms are lists. Integrating hairy structures in such a system would give very manyinternal representations of lists and this would be very expensive to maintain.)Viewing a hash table such as the above as a structureht(k1-v1,k2-v2,...,kn-vn),(which could be created by the goalkeysort([k1-v1,...,kn-vn],S), T=..[ht|S])is better but our reason for not choosing this view is that predicates for accessing, adding, or removingelements in hash tables are much easier to express if hash tables are viewed as recursive structures.We have therefore chosen the view expressed in [Barklund & Millroth 87]: a hash table containing npairs of keys and values corresponds to the structureht(k1,v1,ht(k2,v2,: : :ht(kn,vn,empty_ht): : :))where for every i, ki is ground and ki@<ki+1. The necessity of ordering is the same as above. Most built-inpredicates on hash tables can be expressed quite easily in Prolog using this view [Barklund & Millroth 87].The greatest disadvantage with this view is that it may encourage people to write programs recursingover a hash table using clauses such assize(ht(K,V,T),M,O) :- N is M+1, size(T,N,O)It is possible to obtain the \rest" T of the hash table in the �rst argument using the primitives for removingone element. In this case, recursing over the whole table may become expensive. This is one reason whywe suggest in chapter 5 above that when a hairy structure is decomposed, the components should becomeordinary structures. In the example above, at the �rst level of recursion, T would get instantiated to theordinary structure corresponding to the rest of the table. Further recursion would only have to decomposethis ordinary structure.6.1.4. Built-in Predicates. The following are some predicates on tables which should be implemented ata low level to be really e�cient, but with corresponding versions for ordinary structures. A + sign beforean argument means that the argument must be instantiated. Other arguments may be instantiated oruninstantiated.gethash key +hash_table valueThis is true if key is associated with value in hash_table. If key is ground this goal succeedszero or one time. If key is not ground it succeeds one time for each key in hash_tablewhich uni�es with key. The value returned for key is not a copy of the value found in thetable (as it would have been if the table was implemented using the internal data base).To implement Prolog data bases using these hash tables, it is therefore necessary to haveseparate primitives for freezing and melting clauses [Nakashima et al. 84]. (The internaldata base in Tricia is indeed implemented in this way [Barklund 87].)puthash +key +hash_table value new_hash_tablenew_hash_table is exactly like hash_table, except that key is associated with value. Thisdoes not change hash_table.remhash key +hash_table new_hash_tablenew_hash_table is exactly like hash_table, except that key is not associated with any value.This does not change hash_table. This may succeed zero, one or several times, in analogywith gethash.size +hash_table sizeThe integer size is the number of key-value pairs in hash_table.For e�ciency of some applications, predicates for testing if some table is actually implemented as a hairystructure and for converting between hairy and ordinary structures could be provided.(In [Barklund & Millroth 87] two predicates addhash/4 and modhash/5 are given. They can easily bede�ned in terms of puthash/4 and remhash/3 or vice versa.)6

www.manaraa.com

6.2. ArraysArrays are a special case of tables, where the keys are always integers in a limited range, but they are usedin a quite di�erent manner. Because of their �xed set of keys, integrating them in Prolog should be done ina di�erent way.6.2.1. Motivation. Many computations, numerical as well as symbolic, use �xed-size tuples, i.e., arrays. InProlog, structures are used for this purpose. This works �ne except for large tuples. Changing a few elementsin a large structure is expensive since the whole structure must be copied. Introducing mutable arrays is anattempt to solve this problem. Since arrays are a special case of tables they could easily be implementedas hash tables. This would at the same time remove the condition that the range of the keys for an arraymust be predetermined. Implementing arrays this way is quite e�cient since a trivial hash function can beused for integer keys and it is often possible to dimension the physical hash table to avoid hash collisions. Inspite of this, we have chosen to implement arrays separately, because there are several operations on arrayswhich are meaningless on general hash tables. By making arrays a separate data type, the domain of thoseoperations is clearly de�ned.6.2.2. Implementation. In [Eriksson & Rayner 84] an implementation of \mutable arrays" is described(which was the primary source of inspiration for the implementation of hash tables in Tricia).6.2.3. Integration. Mutable arrays have much in common with ordinary structures, the main di�erencebeing that updating an element is usually much cheaper and accessing an element is usually a little moreexpensive for arrays.Recursing over the elements of a structure is an unnatural operation and is not provided in Prolog,instead =../2 is used to obtain a recursive term. We think that the corresponding ordinary structures forarrays should also be non-recursive so we let an array of length k correspond to a structure with functorarray/k. As for structures, the implementation of arrays does not require the elements to be instantiatedso there are no particular di�culties in integrating arrays this way. Most operations on arrays are obtainedusing the general structure predicates.Array elements are accessed with the predicate arg/3.Arrays are created either by calls to functor/3 (a goal functor(A,array,N) instantiates A to an arraycontaining N uninstantiated variables), or with =../3 to create them with some initial contents (A =..[array,a,b,c,d] instantiates A to an array of length 4, containing the atoms a, b, c and d). functor/3can also be used to get the size of an array.The normal way to recurse over an array A viewed this way would be to decompose it with =../2, i.e.,A=..[array|L] and recurse on L.The remaining array operation, i.e., updating elements, requires a new built-in predicate since there isno corresponding structure predicate.6.2.4. Built-in predicates. The most important built-in predicate on arrays isargh +Index +Array Element New_arrayThis is true if Index is a valid index in Array and New_array is exactly as Array exceptthat the argument speci�ed by Index is Element. A speci�cation (not runnable in Prolog)of argh/4 could be8I; A;X;Bfargh(I; A;X;B)$9Kfarg(I; B;X) ^ functor(A; array;K) ^ functor(B; array ;K)^ 8Jf1 � J ^ J � K ^ I 6= J ! 9Y farg(J;A; Y) ^ arg(J;B; Y)gggg:Alternatively, we could imagine a predicate gra/3 which is the complement of arg/3 i.e.,gra(I,A,B) is true if the structures A and B are identical except for their Ith argument(which may or may not be identical). Using gra/3 it is easy to de�ne argh/4 asargh(I,A,X,B) :- gra(I,A,B), arg(I,B,X).6.3. CharactersCharacters are the minimal units for communication with text I/O devices. Also, text strings are composedof characters. 7

www.manaraa.com

6.3.1. Motivation. In Edinburgh Prolog a character is represented by an integer whose value happens tocoincide with the ASCII-code of the character. Sometimes this may be desirable:1. Some operations, e.g., case conversion, can easily be de�ned in terms of standard arithmetic operations.2. The set of constants in Prolog is kept down.On the other hand there are some reasons for introducing characters among Prolog's terms:1. The common operations on characters are few and can be handled by a small set of primitives. If theASCII code of a character can be easily obtained, any other operation can be coded almost as easily asif the characters were represented directly as integers.2. If predicates on characters are introduced, a character data type naturally delimits the domain of suchpredicates and also delimits what can be put in a string.3. It is practical to have a syntax for character constants in Prolog. In some Prologs this is solved byintroducing a notation hack where, e.g., 0'X (radix zero) denotes the ASCII code of X.4. The output routines do not know when an integer should be written as a character constant or a sequenceof digits.5. On modern I/O devices, characters may have other properties than their ASCII codes, e.g., a font. Suchattributes are di�cult to add to characters represented as integers.We think the latter arguments take precedence over the former and propose a character data type in Prolog,similar to that of Common Lisp.6.3.2. Implementation. A character has three disjoint parts: a character code, a font and shift bits. InTricia the code may occupy 8 bits and the font 6 bits, but there is no reason why this could not be increasedto care for larger character sets. There are 4 shift bits which are mainly intended for communication withkeyboards (named hyper, super, meta and control) [Steele 84].Any practical implementation of characters as hairy structures will require them to be ground.6.3.3. Integration. Unlike hash tables and arrays, characters always have a certain number of components.This makes it easy to integrate them in Prolog. We propose that a character should have a correspondingordinary structure char(code,font,bits), where all arguments are integers in suitable ranges.6.3.4. Built-in Predicates. All predicates below are easy to implement in Prolog, but some computersprovide e�cient primitives for them, it is desirable that programmers do not introduce di�erent versions ofthem and it is desirable to enhance portability.alphabetic +CharacterTrue if Character is an alphabetic character.digit +CharacterTrue if Character is a digit.upcase +Character U_caseTrue if Character is alphabetic and U_case is the same character, in upper case.downcase +Character L_caseTrue if Character is alphabetic and L_case is the same character, in lower case.For convenience, it may also be desirable to introduce a syntactic sugar for characters with null font andbits.6.4. StringsStrings are text terms. Most computers provide e�cient representations of ground strings.6.4.1. Motivation. In Edinburgh Prolog atoms work as text constants. There is also a convention that alist of integers sometimes may be interpreted as a string where each integer corresponds to a character inthe string. Most of the arguments above for and against characters as a data type can be applied to stringsas well and we introduce strings as a separate data type for the same reasons as for characters.8

www.manaraa.com

6.4.2. Implementation. Strings can be implemented on top of arrays if the implementation of arrays can beoptimised for byte arrays. Otherwise, it is easy to make separate implementation of mutable strings similarto that of arrays. The syntax "C1C2 : : :Cn" can be modi�ed to denote such a (ground) string rather thana list of integers. For ground strings, a packed representation is the most e�cient but if the implementationis made on top of arrays it should be possible to resort to using the general arrays, so the components neednot be ground.6.4.3. Integration. There are several ways to view a string: as an \uninterned" atom (requiring strings tobe constant), as a list of characters or as an array of characters. We are somewhat ambivalent towards theview of strings. We could require them to be ground, so that viewing them as constants would work. On theother hand, even with ground strings, one does often want to inspect the constituent characters or recurseover the string. Therefore strings should correspond to non-atomic terms.Let us investigate the pros and cons of some possible integrations of strings in Prolog.1. A string could be viewed as a list of integers (or characters, but that is not important here). Theadvantage would be one of backwards compatibility and compact syntax but the disadvantages of usinglists for this purpose are discussed in section 6.1.3 and we dismiss this solution.2. A string of length k could be viewed as a structure with the functor string/k and character arguments,similar to arrays. This stresses the non-recursiveness of the actual implementation of strings. As forordinary structures and arrays, it forces users to create recursive terms explicitly if they want to recurseover them.3. A hybrid solution is viewing a string as a structure with functor string/1 whose argument is a list ofcharacters. This has the advantage of reserving only one functor but may require structure predicatesetc., to inspect not only the functor but also the �rst argument to determine if a hairy structure can becreated.4. A more interesting solution is to view a string as a binary structure with functor string/2, whosecomponents are the �rst element of the string and the rest of the string. An empty string would be aterm empty_string. Like the �rst approach, this is a recursive structure, but this approach is bettersince Prolog has less prejudice towards the functor string/2 than towards '.'/2. The disadvantageis that the e�cient implementation of strings is not recursive. If an attempt is made to destruct astring, the best solution is probably to return the �rst element of the string and an ordinary structurecorresponding to the rest of the string.In Tricia we have chosen the second approach, but the fourth approach also has certain advantages. Usingthe second approach, strings are accessed (arg/3), created (functor/3 and =../2), and modi�ed (argh/4)in the same way as arrays.6.4.4. Built-in Predicates. Some other predicates on strings should be built-in to take advantage of thee�cient representation and string handling primitives available on many computers. For example:upcase +String U_stringU_string is String in upper case. This and the next relations are supposed to hold betweenstrings or between characters (see section 6.3.4).downcase +String L_stringL_string is String in lower case.capitalize +String C_stringC_string is String with its �rst letter in upper case and the following letters in lower case.substring +String +Start +End Substringsubstring +String Start End +SubstringSubstring is a segment of String, beginning at subscript Start and ending at subscript End.The second mode is a string search.7. EFFICIENCYImplementing the changes in a Prolog system as suggested, will not have negative consequences on perfor-mance if hairy structures are not used, except if structure predicates try to create hairy structures whenpossible. In this case, creating a structure will involve looking up the functor in a table to see if it is reserved.9

www.manaraa.com

This is already implemented in most Prolog systems, to ensure that structures with the reserved functor'.'/2 are always implemented as lists.The consequences will also be small if hairy structures are only used through the built-in predicates.For example, if hash tables are only created empty and changed through the predicates puthash/4 andremhash/3 then performance will not be a�ected.The suggested modi�cations only have e�ect if hairy structures are used in other ways than they areintended for. For example, recursing over a hash table is an expensive operation, but everything will work asexpected, the only penalty is in execution time and possibly memory consumption. This is just an instanceof a well known principle: no data structure is e�cient for all kinds of operations.8. ALTERNATIVESThe following are some other ways which have been proposed to solve some or all of the problems mentionedin the introduction.8.1. Why Not Let All Structures Be Mutable?It would be possible to make any structure mutable using the technique described in [Eriksson & Rayner 84].This would be elegant since then predicates such as gra/3 or argh/4 (see section 6.2.4) could be applied toany structure and there would be no need to make arrays a special data structure.The disadvantage of doing this is that it becomes necessary to modify all parts of the Prolog systemwhich assume anything about the internal representation of any structure. The most serious e�ect of this isfor open-coded uni�cation in WAM which would get several times more complicated by taking into accountthe possibility that a hairy structure may appear anywhere. In our solution above we avoid this by localizingsuch e�ects to structures with certain reserved functors.8.2. Cdr-coded ListsCdr-coded lists [Baker 78] have been proposed as an alternative to arrays and are implemented in someProlog systems (e.g., PLM [Dobry et al. 85]). These are lists where one or two bits per word are used tostore information about how the tail of the list can be found. Many lists with k elements can then be storedin k words of memory instead of 2 � k words for normal implementation. This does not solve the problemof how to update components of non-atomic terms e�ciently. It saves memory but may well increase theexecution time of programs since traversing lists will involve more computation, although the number ofmemory references is decreased.8.3. MappingsWe are investigating another quite di�erent way of integrating arrays and tables in Prolog. The idea is toreplace structures as the only non-atomic data structure by a more general kind of term: mappings, of whichstructures are a special case.A mapping is a functor together with a table. A mapping with a table whose set of keys is f1; : : : ; ngis a structure. The generalisation of functor/3 is domain/3 whose arguments are a mapping, its functorand its set of keys. =../2 is generalized as compose/4 taking as arguments a mapping, its functor, its setof keys and its set of values. apply/3 corresponds immediately to arg/3, but the �rst argument could beany key, not just integers. Two mappings unify if they have the same functor and set of keys and the valuescorresponding to each key unify.General mappings would be implemented by hash tables but the special case by ordinary Prolog struc-tures or arrays. A program not using the general mappings could be run in ordinary Prolog.Connection Machine R Lisp [Steele & Hillis 86] has a similar device, called xappings. We will investigatethis subject further.9. RELATED WORKSeveral authors (e.g., [Eriksson & Rayner 84] and [Cohen 84]) have studied how arrays could be incorporatedin Logic Programming but little attention has been paid to how they should be made �rst class terms inProlog, although some authors may have had a solution like ours in mind.Strings are implemented in some Prolog systems but as far as we know, they are either assumed to beconstant (i.e., atoms) or implemented ine�ciently. 10

www.manaraa.com

[Pereira 85] introduces directed acyclic graphs|a data structure related to hash tables|in logic pro-gramming, but does not integrate them among ordinary terms. We are not aware of any other work on hashtables in Logic Programming, even less so on how they should �t into an otherwise austere language likeEdinburgh Prolog.10. CONCLUSIONSIn [Barklund & Millroth 87] an implementationmethod was given for hash tables in Prolog. An interpretationof them as �rst class terms was given for the purpose of showing that they belong in a logic programminglanguage. We have investigated and suggested solutions to the problems appearing when arrays, hash tables,and other data structures which have proved useful in Computer Science are to be incorporated as �rst classterms of Prolog. This is to make uni�cation, composition and decomposition of these structures work exactlyas for ordinary structures with the straight-forward implementation.We think mutable data structures are so important that they should be considered for inclusion in anyserious Prolog system. Making them �rst-class structures is non-trivial, but the methods suggested in thispaper preserve both the e�ciency and the simplicity of terms in Prolog.It may not be worth the trouble to let structure predicates and interning of atoms try to create hairystructures when possible. This simpli�es structure predicates since they will only have to worry aboutdecomposition of hairy structures. As hairy structures are not normally intended to be created by structurepredicates, this does not harm performance signi�cantly. Also, since it is di�cult to let open-coded uni�cationin compiled code construct hairy structures, this make the behaviour of structure predicates and compiledcode consistent (although this is not visible to users).It sems that hairy structures which are implemented recursively or without any useful order betweenits components, should in general have recursive corresponding ordinary structures. On the other hand,hairy structures of a �xed size, or with a certain order between the components, should have non-recursivecorresponding ordinary structures. Examples of the former are lists and hash tables, examples of the latterare characters, arrays, and strings. In some cases, such as strings, recursive ordinary structures would bedesirable, in such cases it may be worthwhile to search alternative recursive implementations of the hairystructures.ACKNOWLEDGEMENTSWe are grateful to our colleagues at UPMAIL for interesting discussions and nice tea breaks, particularly to�Ake Hansson whose criticism did much to improve this paper. The comments from the referees of SLP '87were also valuable. We would also like to thank Martin Nilsson at the University of Tokyo for giving us accessto computer equipment for the �nal editing of the SLP '87 version of the paper, and Yoshihiko Futamura atHitachi Advanced Research Laboratory for his hospitality. This work would not have been possible withoutthe continous support from our families.REFERENCES[Allen 78] J. Allen, Anatomy of LISP, McGraw-Hill, New York, 1978.[Baker 78] H. G. Baker Jr., List Processing in Real Time on a Serial Computer, Communications ofthe ACM, vol. 21, no. 4, pp. 280{293, April 1978.[Barklund 87] J. Barklund, E�cient Interpretation of Prolog Programs, ACM SIGPLAN '87 Symposiumon Interpreters and Interpretive Techniques, St. Paul, Minn., June 1987.[Barklund et al. 86]J. Barklund, �A. Hugosson, M. Nyl�en, L. Oestreicher, Tricia User's Guide, Computing ScienceDept., Uppsala University, Sept. 1986.[Barklund & Millroth 87]J. Barklund, H. Millroth, Hash Tables in Logic Programming, 4th International Conferenceon Logic Programming, Melbourne, May 1987.[Bowen 81] D. L. Bowen, DECsystem-10 Prolog User's Manual, University of Edinburgh, Dept. of Ar-ti�cial Intelligence, Edinburgh, 1981.[Carlsson 86] M. Carlsson, Compilation for Tricia and Its Abstract Machine, UPMAIL Technical Report35, Uppsala University, Sept. 1986. 11

www.manaraa.com

[Cohen 84] S. Cohen, Multi-Version Structures in Prolog, The International Conference of Fifth Gen-eration Computer Systems, Tokyo, 1984.[Dobry et al. 85]T. P. Dobry, A. M. Despain, Y. N. Patt, Performance Studies of a Prolog Machine Archi-tecture, University of California, Berkeley, 1985.[Eriksson & Rayner 84]L-H. Eriksson, M. Rayner, Incorporating mutable arrays into Logic Programming, SecondInternational Logic Programming Conference, Uppsala, July 1984.[Nakashima et al. 84]H. Nakashima, K. Ueda, S. Tomura,What Is a Variable in Prolog?, International Conferenceon Fifth Generation Computer Systems 1984, pp. 327{332, Tokyo, 1984.[Pereira 85] F. C. N. Pereira, A Structure-Sharing Representation for Uni�cation-Based Grammar For-malisms, 23rd Annual Meeting of the Association for Computational Linguistics, pp. 137{144, Chicago, July 1985.[Steele 84] G. L. Steele Jr., Common Lisp, the Language, Digital Press, 1984.[Steele & Hillis 86]G.L. Steele Jr., W.D. Hillis, Connection Machine R Lisp: Fine-Grained Parallel SymbolicProcessing, 1986 ACM Conference on Lisp and Functional Programming, pp. 279{297, Cam-bridge, Mass., Aug. 1986.[Warren 80] D. H. D. Warren, Logic Programming and Compiler Writing, Software|Practice and Ex-perience, vol. 10, no. 2, pp. 97{125, Feb. 1980.[Warren 83] D. H. D. Warren, An Abstract Prolog Instruction Set, SRI Technical Note 309, Oct. 1983.

12

