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1. PROBLEM

Edinburgh Prolog is a small and elegant language, providing few but general constructs. For example, the
only data are general terms: atoms and structures (with a little sugar to make certain binary structures look
like lists).

The disadvantage is that although this is sufficient to represent any other data structure, all operations
on these data structures may not be very efficient. In particular, modifying large data structures is very
expensive. One remedy for this, which is the approach taken in some LISP systems (e.g., Common Lisp
[Steele 84]) is to add new primitive data structures, such as arrays, strings, and hash tables, and built-in
operations on them.

Unfortunately, doing this with Edinburgh Prolog would destroy the simplicity and uniformity of the
language. Indeed, “rich” languages such as Common Lisp and Ada have been accused of becoming too large
and incomprehensible.

The paper attempts to solve this problem. We will propose a number of data structures, primitive
operations on them (which could not have been efficiently coded in Prolog) and various ways of integrating
them in Edinburgh Prolog without destroying its uniformity.

Tricia is an implementation of Prolog on the DEC-2060 computer, developed at Uppsala University. It
is based on a modified WAM [Carlsson 86; Warren 83] and the built-in predicates are roughly a superset of
Edinburgh Prolog. Some of the constructs in this paper are implemented in version 0.63 of Tricia [Barklund
et al. 86], all of them are intended to be implemented in version 1.0.

By “Edinburgh Prolog” we mean the language and semantics of Prolog described in [Bowen 81], not to
the actual implementation developed at Edinburgh University. Below we will call this simply “Prolog”.

2. HAIRY DATA STRUCTURES

In Prolog there are only two kinds of data: atoms (symbols) and structures. Structures are usually imple-
mented as sequences of memory words where the first word contains a reference to the functor of the term
and the following words contain the arguments of the structure. The only exceptions are structures with
the functor *. /2 (lists) whose functors are implicit. This format allows direct access to arguments of the
structure and makes it cheap to access the arguments sequentially, e.g., when unifying terms. It does not
allow cheap non-destructive modification of arguments which requires copying the whole structure. However,
we can imagine other ways of implementing some structures for the benefit of other operations.

In [Eriksson & Rayner 84] and [Barklund & Millroth 87] implementation methods are given for adding
arrays and hash tables to Prolog. The key idea i1s a way to hide the side effects which are necessary for
efficient updating of structures. This is accomplished by constructing exception chains for older versions
of the data structure. One consequence of this is that the internal representation of certain arrays and
hash tables can be quite complicated. In the rest of this paper, ordinary structures stands for structures
implemented the normal way as described in the previous paragraph and hairy structures stands for other
non-straight-forward implementations of structures.

3. TERMS IN PROLOG

In Prolog, all terms are expected to

1. have a syntax (both for input and output) on the form atom or functor(arg,, ..., arg;) (although some
sugared syntax may also exist),

2. be composable and decomposable by the built-in predicates =../2, functor/3 and arg/3 (referred to
below as the structure predicates) and

3. unify with terms being syntactically equivalent or which can be made syntactically equivalent by in-
stantiating variables in either or both terms.

If hairy structures are added to Prolog, there are at least three ways to do it, as described below.

3.1. Second-class Terms

Let hairy structures be “second-class” terms without syntax which can only be manipulated through built-in
predicates. This is easiest to implement but has several disadvantages.

Firstly, the uniformity and simplicity of Prolog is broken. This is not only a philosophical point but it
also complicates understanding of the language for novice programmers.
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Secondly, imagine as an example a predicate which tests if a term is ground. This can be easily done
having base cases for variables and atoms and a recursive case for structures using =../2. With second-class
terms 1t would be necessary to add one case for each hairy structure.

Thirdly, when debugging programs it helps if arrays, hash tables etc. can be in- and output.

3.2. Abstract Data Structures

It has been suggested that using types and abstract data could be a way to handle the situation. The
idea behind abstract data structures [Allen 78] is to provide (functions or relations acting as) recognizers,
selectors, constructors and predicates on a data structure without revealing its actual representation. This
is a beautiful idea but it stands in conflict with the principle of Prolog that all terms have a syntax.

After a major restructuring of the way terms are supposed to behave, it is possible that abstract data
structures can fit nicely in Prolog.

3.3. Conservative extension

The third way is to require that hairy data structures meet all requirements for first-class terms in Prolog.
The rest of the paper discusses how this can be done and at which cost.

4. LIMITED REPRESENTATION OF TERMS

Some hairy structures are only limited representations of terms in the sense that the implementation requires
certain components of the terms to be instantiated or even ground. For example, it is possible to imagine
strings where some characters are replaced by uninstantiated variables. Such strings cannot be implemented
as packed arrays of characters, which is the common technique.

Hairy structures are either created by specialized built-in predicates or by structure predicates. When
a hairy structure is created by a built-in predicate the problem can be handled by documenting that certain
arguments of the predicate must be ground.

It is necessary to decide for structure predicates what should happen if an attempt is made to construct
a hairy structure where some critical component is uninstantiated and what should happen if the component
later becomes instantiated. Four possibilities follow below.

4.1. Construction Fails

The easiest solution is to let such attempts fail or generate an exception. This is easy to implement but
makes Prolog even more incomplete. For experienced programmers this may in practice be only a small
inconvenience.

4.2. Construction Suspends

In an implementation of Prolog with primitives for delaying goals until certain terms become instantiated
or ground, the structure predicate could suspend until the critical component becomes instantiated. If this
approach is taken, there are other built-in predicates which should have the same behaviour and those
modifications to Prolog are beyond the scope of this paper.

4.3. An Ordinary Structure is Created

The previous approaches share the advantage that terms implemented as ordinary structures and terms
implemented as hairy structures form mutually disjunct sets. If it is acceptable that two equivalent terms
may have different internal representations, then a structure predicate can create an ordinary structure when
the requirements for a hairy structure are not fulfilled. The next chapter discusses what problems will arise
from this.

4.4. Always Create Ordinary Structures

Again assuming that different representations of equivalent terms are acceptable, structure predicates can
always create ordinary structures, even when it would have been possible to create a hairy structure instead.
This simplifies the structure predicates but of course affects performance when the created structure is used.
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5. DIFFERENT REPRESENTATIONS OF EQUAL STRUCTURES

What happens if there are different representations of equal structures? Let us first state in which parts of
a Prolog system terms are actually composed or decomposed.

The general unification routine.
Open-coded unification in compiled code.
Structure predicates.

Built-in predicates on certain terms.

T o= W N =

Interning of atoms.

We will cover each of these separately.

5.1. General Unification

The general unification routine must be augmented with three new cases for each hairy structure type (one
case for unifying two hairy structures and two cases for unifying a hairy structure with an ordinary structure).

For example, if an attempt is made to unify a string and an ordinary structure, the ordinary structure
should be inspected to find out if it could possibly be an alternative representation of a string. If this is
the case, both the string and the ordinary structure must be traversed to unify their components. An easy
but not so efficient solution in this situation is of course to convert the string to its corresponding ordinary
structure and then call the general unification routine again with the two ordinary structures.

5.2. Open-coded Unification

Every sensible representation of a hairy structure as an ordinary structure will reserve either a finite number
of functors or all functors with a certain name (but varying arities). When the compiler finds a structure
with such a functor in the head of a clause it cannot generate a get_structure instruction (we assume
the implementation is based on some abstract machine similar to WAM). This is because at runtime the
predicate may be called with a hairy structure as argument. We propose four alternative ways of extending
WAM to cope with hairy structures.

5.2.1. Failure. All attempts to compose or decompose a hairy structure or its corresponding ordinary
structure fail or generate an exception. This is in accordance with the behavior of structure predicates
described in section 4.1.

5.2.2. Copying Hairy Structures. For each hairy structure foo a new instruction get_foo Xi is introduced.
At runtime it dereferences Xi and takes one of the following actions:

1. If Xi dereferences to a variable then get_foo Xi is equivalent to get_structure F,Xi where F is the
appropriate reserved functor, entering write mode. This will always create an ordinary structure, in
analogy with the behavior of structure predicates described in section 4.4.

2. If Xi dereferences to an ordinary structure with a functor F which is one of the reserved functors then
get_foo Xi should be equivalent to get_structure F,Xi, setting up the S register and entering read
mode.

3. If Xi dereferences to a hairy foo-structure then a corresponding ordinary structure is created on the
heap, the S-register is set to point to its first argument and read-mode is entered.

4. If Xi dereferences to something else backtracking is initiated.

The copying of structures in case 3 is admittedly not very elegant but it has the advantage that the compiler
can generate unify-instructions following the get_foo-instruction just as after a get_structure-instruction.

5.2.3. Loading Arguments in Variables. For each hairy type of structure foo whose corresponding ordinary
structure has a functor F and k arguments, an instruction get_foo Xi,Xji1,...,Xjk is introduced. If Xi
dereferences to a variable or an ordinary structure, this instruction should be equivalent to the following
sequence of WAM-instructions

get_structure F,Xi
unify_variable Xji

unify_variable Xjk.
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If Xi dereferences to a hairy foo-structure this instruction should be equivalent to creating a corresponding
ordinary structure on the heap, placing a pointer to this structure in Xi and then executing the sequence
of instructions above. This has the advantage that for many hairy structures the corresponding ordinary
structure does not have to be created. The disadvantage is that it may be impractical to implement instruc-
tions with a large number of arguments using a byte-code emulator. Also, this may be a waste of temporary
registers.

5.2.4. Do Not Open-code Unification. The simplest way to handle open-coded unification is not open-
coding unification of a source term which may unify with a hairy structure. For example, if in the ith
argument position of some clause appears a term bar(a,Xj,c) which may unify with a hairy structure, 1t is
not compiled to

get_structure bar/3,Xi

unify_constant a

unify_value Xj % or unify_variable Xj if first occurrence of Xj
unify_constant b

but rather to

put_structure bar/3,Xi
unify_constant a
unify_value Xj
unify_constant ¢
get_value Xi,Xj

thus creating an ordinary term and relying on the general unification routine to handle the case when Xi
is a hairy structure. In good programs, head unification of hairy structures will be very rare so we do not
think this will affect space or time performance significantly.

5.3. Structure Predicates

In chapter 4 above we discuss different approaches to how structure predicates should compose possibly hairy
structures. Let us now see how hairy structures can be decomposed.

The predicate functor/3 is probably quite trivial to implement since it only involves finding the functor
of the corresponding ordinary structure. arg/3 and in particular =../2 may be more difficult to implement.

For some hairy structures (e.g., arrays which are similar to ordinary structures) accessing components
by arg/3 will be almost as easy as for ordinary structures. In general, however, arg/3 will be as difficult as
=../2.

The simplest general solution is of course to create a corresponding ordinary structure and then de-
compose it. On the other hand, we think that for most hairy structures it is not difficult to write primitive
routines for handling them. arg/3 and =../2 would then only have to dispatch to the correct routine.

5.4. Built-in Predicates

For every primitive built-in predicate operating on some hairy structure (e.g., modifying a hash table) it
is necessary to define an equivalent operation on the corresponding ordinary structures. If corresponding
ordinary structures are reasonably well chosen i1t will be easy to define these operations in Prolog with
bad but acceptable efficiency. For an example of how this is done for hairy hash tables, see [Barklund &
Millroth 87].

5.5. Interning of Atoms

If some hairy structures correspond to atoms (such as empty_ht below in section 6.1.3) they may have to
be recognised when atoms are interned. In this case it is obvious that predicates on atoms must recognise
them and treat them as atoms. Alternatively the built-in predicates on hairy structures (not only the Prolog
equivalents of the predicates mentioned in the previous section) should handle these atoms. The latter
approach is probably easiest to implement.

6. FOUR EXAMPLES OF HAIRY STRUCTURES

Logical terms as provided in Prolog are a very elegant data type which quite easily can be used to represent
any other data type. Programs operating on small data structures usually have no problem representing their
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data efficiently, simple lists and trees work fine in most cases. When programs need large data structures,
however, the programmer often finds that general logical terms are too inefficient for the particular problem.
The key point is that it is easy in Prolog to say that two terms T1 and T2 have one or a few components in
common, this can be done by, e.g.,

arg(I,T1,X), arg(I,T2,X),

but it is very difficult to say that two terms have all elements except one or a few in common. In imperative
languages this is solved by destructively changing one term to obtain the other, causing a side effect of the
computation. The most important hairy structures are proposed to overcome this problem.

6.1. Tables

We define a table to be a term which pairs together ground keys with values. (In Prolog a table can
alternatively be represented by a set of binary clauses. Updating such tables requires manipulating the data
base and we do not consider them here.)

6.1.1. Motivation. Tables are very common in Prolog programs. Small tables are often implemented as
A-lists, larger tables as trees. If accessing a table is much more frequent than adding to or deleting from
it, it 1is realistic to implement the table efficiently in Edinburgh Prolog as a k-order tree structure. Since
destructive updating of the tree i1s impossible, insertion or deletion of an element in a tree with n nodes
requires allocation of between log,(n) and n nodes, depending on how well the tree is balanced. This
becomes expensive when the tables get large, as they often do.

Sometimes a Prolog coding trick is employed: representing the table by a tree whose fringe consists of
uninstantiated variables, to facilitate the addition (but not replacement or deletion) of nodes. This is elegant
for certain purposes [Warren 80], but is generally awkward and programs using such tables often need to use
meta-logical concepts.

Hashing is another efficient implementation method for tables. If hash tables are represented by ordinary
Prolog structures, programs for accessing values by keys and adding or removing key-value pairs can be
written in Prolog. Unfortunately, if addition and deletion of key-value pairs is to be implemented efficiently,
destructive modification of the terms becomes necessary. If the implementation of hash tables is made below
the Prolog user level, it is possible to let insertion and deletion invisibly use destructive operations, hiding
their side effects. From the outside the operations will appear to be completely free of side effects. In this
way 1t 18 possible to let most insertions and deletions allocate an amount of memory equivalent to only one
tree node.

We consider an efficient and clean implementation of tables in Prolog so important that it motivates
extending Prolog with hairy structures.

6.1.2. Implementation. See [Barklund & Millroth 87] for an implementation method for hash tables in
Prolog.

6.1.3. Integration. Finding a suitable correspondence between hash tables and ordinary structures is dif-
ficult, since the components of a hash table have no meaningful observable order even in the actual hairy
structure. Also the components must be pairs of keys and values where the keys are ground.

One approach is letting a hash table containing n pairs of keys and values correspond to a list
Lki-v1,ka-va, . oo kn—vnd,

where for every 7, k; is ground and k;@<k; 11 (0</2 is some total ordering on ground terms). The ordering
criterion is necessary to give a unique syntax for a hash table. The syntax for hash tables is not likely to be
used very often so a clumsy syntax may be acceptable. Incidentally, to obtain a hash table without worrying
about the order of the keys, a goal

keysort([ki-vy, ..., kp-v,1,T)

could be used.

The problem with this correspondence (and indeed all correspondences between hairy structures and
lists) is that lists are used in very many places in a Prolog system. It would be difficult and expensive to
allow hash tables or other hairy structures to appear in every place where a list 1s expected. It would also
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be very expensive to create a list, checking if the list could actually be implemented as a hairy structure. In
other words, the functor ’.’/2 is already reserved for other purposes.

(This can be seen as an argument for structure-based Prolog against list-based Prolog, where the only
non-atomic first-class terms are lists. Integrating hairy structures in such a system would give very many
internal representations of lists and this would be very expensive to maintain.)

Viewing a hash table such as the above as a structure
ht (ki-v1,ko-vo, ... ky=vy),
(which could be created by the goal
keysort ([ki-v1,...,kn-v,1,8), T=..[ht|S])

is better but our reason for not choosing this view is that predicates for accessing, adding, or removing
elements in hash tables are much easier to express if hash tables are viewed as recursive structures.

We have therefore chosen the view expressed in [Barklund & Millroth 87]: a hash table containing n
pairs of keys and values corresponds to the structure

ht(ky,v1,ht(ks,va,.. 0t (k,,v,,empty_ht)...))

where for every i, k; is ground and k;@<k; ;1. The necessity of ordering is the same as above. Most built-in
predicates on hash tables can be expressed quite easily in Prolog using this view [Barklund & Millroth 87].

The greatest disadvantage with this view is that it may encourage people to write programs recursing
over a hash table using clauses such as

size(ht(X,V,T),M,0) :- N is M+1, size(T,N,0)

It is possible to obtain the “rest” T of the hash table in the first argument using the primitives for removing
one element. In this case, recursing over the whole table may become expensive. This is one reason why
we suggest in chapter 5 above that when a hairy structure i1s decomposed, the components should become
ordinary structures. In the example above, at the first level of recursion, T would get instantiated to the
ordinary structure corresponding to the rest of the table. Further recursion would only have to decompose
this ordinary structure.

6.1.4. Built-in Predicates. The following are some predicates on tables which should be implemented at
a low level to be really efficient, but with corresponding versions for ordinary structures. A + sign before
an argument means that the argument must be instantiated. Other arguments may be instantiated or
uninstantiated.

gethash key +hash_table value
This is true if key is associated with value in hash_table. If key is ground this goal succeeds
zero or one time. If key is not ground it succeeds one time for each key in hash_table
which unifies with key. The value returned for key is not a copy of the value found in the
table (as it would have been if the table was implemented using the internal data base).
To implement Prolog data bases using these hash tables, it is therefore necessary to have
separate primitives for freezing and melting clauses [Nakashima et al. 84]. (The internal
data base in Tricia is indeed implemented in this way [Barklund 87].)

puthash +key +hash_table value new_hash_table
new_hash_table 1s exactly like hash_table, except that key 1s associated with value. This
does not change hash_table.

remhash key +hash_table new_hash_table
new_hash_table 1s exactly like hash_table, except that key is not associated with any value.
This does not change hash_table. This may succeed zero, one or several times, in analogy
with gethash.

size -+hash_table size
The integer size is the number of key-value pairs in hash_table.

For efficiency of some applications, predicates for testing if some table is actually implemented as a hairy
structure and for converting between hairy and ordinary structures could be provided.

(In [Barklund & Millroth 87] two predicates addhash/4 and modhash/5 are given. They can easily be
defined in terms of puthash/4 and remhash/3 or vice versa.)
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6.2. Arrays

Arrays are a special case of tables, where the keys are always integers in a limited range, but they are used
in a quite different manner. Because of their fixed set of keys, integrating them in Prolog should be done in
a different way.

6.2.1. Motivation. Many computations, numerical as well as symbolic, use fixed-size tuples, i.e., arrays. In
Prolog, structures are used for this purpose. This works fine except for large tuples. Changing a few elements
in a large structure is expensive since the whole structure must be copied. Introducing mutable arrays is an
attempt to solve this problem. Since arrays are a special case of tables they could easily be implemented
as hash tables. This would at the same time remove the condition that the range of the keys for an array
must be predetermined. Implementing arrays this way 1s quite efficient since a trivial hash function can be
used for integer keys and it is often possible to dimension the physical hash table to avoid hash collisions. In
spite of this, we have chosen to implement arrays separately, because there are several operations on arrays
which are meaningless on general hash tables. By making arrays a separate data type, the domain of those
operations is clearly defined.

6.2.2. Implementation. In [Eriksson & Rayner 84] an implementation of “mutable arrays” is described
(which was the primary source of inspiration for the implementation of hash tables in Tricia).

6.2.3. Integration. Mutable arrays have much in common with ordinary structures, the main difference
being that updating an element is usually much cheaper and accessing an element is usually a little more
expensive for arrays.

Recursing over the elements of a structure is an unnatural operation and is not provided in Prolog,
instead =../2 is used to obtain a recursive term. We think that the corresponding ordinary structures for
arrays should also be non-recursive so we let an array of length & correspond to a structure with functor
array/k. As for structures, the implementation of arrays does not require the elements to be instantiated
so there are no particular difficulties in integrating arrays this way. Most operations on arrays are obtained
using the general structure predicates.

Array elements are accessed with the predicate arg/3.

Arrays are created either by calls to functor/3 (a goal functor(4,array,N) instantiates A to an array
containing N uninstantiated variables), or with =../3 to create them with some initial contents (4 =..
[array,a,b,c,d] instantiates 4 to an array of length 4, containing the atoms a, b, ¢ and d). functor/3
can also be used to get the size of an array.

The normal way to recurse over an array A viewed this way would be to decompose 1t with =../2,1.e.,
A=..[array|L] and recurse on L.

The remaining array operation, i.e., updating elements, requires a new built-in predicate since there is
no corresponding structure predicate.

6.2.4. Built-in predicates. The most important built-in predicate on arrays is

argh +Index +Array Element New_array
This is true if Index is a valid index in Array and New_array 1s exactly as Array except
that the argument specified by Index is Element. A specification (not runnable in Prolog)
of argh/4 could be

VI, A, X, B{argh(I, A, X, B) &
AK{arg(I, B, X) A functor(A, array, K) A functor(B, array, K)
AYJ{I<IANT LS KAT#J =3IV {arg(J,AY) ANarg(J,B,Y)}}}}.

Alternatively, we could imagine a predicate gra/3 which is the complement of arg/3 i.e.,
gra(I,A,B) is true if the structures A and B are identical except for their Ith argument
(which may or may not be identical). Using gra/3 it is easy to define argh/4 as

argh(I,A,X,B) :- gra(I,A,B), arg(I,B,X).

6.3. Characters

Characters are the minimal units for communication with text I/O devices. Also, text strings are composed
of characters.

www.manaraa.com



6.3.1. Motivation. In Edinburgh Prolog a character is represented by an integer whose value happens to
coincide with the ASCII-code of the character. Sometimes this may be desirable:

1. Some operations, e.g., case conversion, can easily be defined in terms of standard arithmetic operations.

2. The set of constants in Prolog is kept down.
On the other hand there are some reasons for introducing characters among Prolog’s terms:

1. The common operations on characters are few and can be handled by a small set of primitives. If the
ASCII code of a character can be easily obtained, any other operation can be coded almost as easily as
if the characters were represented directly as integers.

2. If predicates on characters are introduced, a character data type naturally delimits the domain of such

predicates and also delimits what can be put in a string.

3. It is practical to have a syntax for character constants in Prolog. In some Prologs this is solved by
introducing a notation hack where, e.g., 0°X (radix zero) denotes the ASCII code of X.

4. The output routines do not know when an integer should be written as a character constant or a sequence
of digits.

5. On modern I/O devices, characters may have other properties than their ASCII codes, e.g., a font. Such
attributes are difficult to add to characters represented as integers.

We think the latter arguments take precedence over the former and propose a character data type in Prolog,
similar to that of Common Lisp.

6.3.2. Implementation. A character has three disjoint parts: a character code, a font and shift bits. In
Tricia the code may occupy 8 bits and the font 6 bits, but there is no reason why this could not be increased
to care for larger character sets. There are 4 shift bits which are mainly intended for communication with
keyboards (named hyper, super, meta and control) [Steele 84].

Any practical implementation of characters as hairy structures will require them to be ground.
6.3.3. Integration. Unlike hash tables and arrays, characters always have a certain number of components.

This makes it easy to integrate them in Prolog. We propose that a character should have a corresponding
ordinary structure char (code, font, bits), where all arguments are integers in suitable ranges.

6.3.4. Built-in Predicates. All predicates below are easy to implement in Prolog, but some computers
provide efficient primitives for them, it is desirable that programmers do not introduce different versions of
them and it is desirable to enhance portability.

alphabetic +Character
True if Character is an alphabetic character.

digit +Character
True if Character is a digit.

upcase +Character U_case
True if Character is alphabetic and U_case 1s the same character, in upper case.

downcase +Character L_case
True if Character is alphabetic and L_case is the same character, in lower case.

For convenience, it may also be desirable to introduce a syntactic sugar for characters with null font and
bits.

6.4. Strings

Strings are text terms. Most computers provide efficient representations of ground strings.

6.4.1. Motivation. In Edinburgh Prolog atoms work as text constants. There is also a convention that a
list of integers sometimes may be interpreted as a string where each integer corresponds to a character in
the string. Most of the arguments above for and against characters as a data type can be applied to strings
as well and we introduce strings as a separate data type for the same reasons as for characters.
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6.4.2. Implementation. Strings can be implemented on top of arrays if the implementation of arrays can be
optimised for byte arrays. Otherwise, it is easy to make separate implementation of mutable strings similar
to that of arrays. The syntax "C1C5...Cy" can be modified to denote such a (ground) string rather than
a list of integers. For ground strings, a packed representation is the most efficient but if the implementation
is made on top of arrays it should be possible to resort to using the general arrays, so the components need
not be ground.

6.4.3. Integration. There are several ways to view a string: as an “uninterned” atom (requiring strings to
be constant), as a list of characters or as an array of characters. We are somewhat ambivalent towards the
view of strings. We could require them to be ground, so that viewing them as constants would work. On the
other hand, even with ground strings, one does often want to inspect the constituent characters or recurse
over the string. Therefore strings should correspond to non-atomic terms.

Let us investigate the pros and cons of some possible integrations of strings in Prolog.

1. A string could be viewed as a list of integers (or characters, but that is not important here). The
advantage would be one of backwards compatibility and compact syntax but the disadvantages of using
lists for this purpose are discussed in section 6.1.3 and we dismiss this solution.

2. A string of length % could be viewed as a structure with the functor string/k and character arguments,
similar to arrays. This stresses the non-recursiveness of the actual implementation of strings. As for
ordinary structures and arrays, 1t forces users to create recursive terms explicitly if they want to recurse
over them.

3. A hybrid solution is viewing a string as a structure with functor string/1 whose argument is a list of
characters. This has the advantage of reserving only one functor but may require structure predicates
etc., to inspect not only the functor but also the first argument to determine if a hairy structure can be
created.

4. A more interesting solution is to view a string as a binary structure with functor string/2, whose
components are the first element of the string and the rest of the string. An empty string would be a
term empty_string. Like the first approach, this is a recursive structure, but this approach is better
since Prolog has less prejudice towards the functor string/2 than towards ’.’/2. The disadvantage
is that the efficient implementation of strings is not recursive. If an attempt is made to destruct a
string, the best solution is probably to return the first element of the string and an ordinary structure
corresponding to the rest of the string.

In Tricia we have chosen the second approach, but the fourth approach also has certain advantages. Using
the second approach, strings are accessed (arg/3), created (functor/3 and =../2), and modified (argh/4)
in the same way as arrays.

6.4.4. Built-in Predicates. Some other predicates on strings should be built-in to take advantage of the
efficient representation and string handling primitives available on many computers. For example:

upcase +String U_string
U_string is String in upper case. This and the next relations are supposed to hold between
strings or between characters (see section 6.3.4).

downcase +String L_string
L_string is String in lower case.
capitalize +String C_string
C_string is String with its first letter in upper case and the following letters in lower case.
substring +String +Start +FEnd Substring
substring +String Start End +Substring

Substring is a segment of String, beginning at subscript Start and ending at subscript End.
The second mode is a string search.

7. EFFICIENCY

Implementing the changes in a Prolog system as suggested, will not have negative consequences on perfor-
mance if hairy structures are not used, except if structure predicates try to create hairy structures when
possible. In this case, creating a structure will involve looking up the functor in a table to see if it is reserved.
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This 1s already implemented in most Prolog systems, to ensure that structures with the reserved functor
>, 7 /2 are always implemented as lists.

The consequences will also be small if hairy structures are only used through the built-in predicates.
For example, if hash tables are only created empty and changed through the predicates puthash/4 and
remhash/3 then performance will not be affected.

The suggested modifications only have effect if hairy structures are used in other ways than they are
intended for. For example, recursing over a hash table is an expensive operation, but everything will work as
expected, the only penalty is in execution time and possibly memory consumption. This is just an instance
of a well known principle: no data structure is efficient for all kinds of operations.

8. ALTERNATIVES

The following are some other ways which have been proposed to solve some or all of the problems mentioned
in the introduction.

8.1. Why Not Let All Structures Be Mutable?

It would be possible to make any structure mutable using the technique described in [Eriksson & Rayner 84].
This would be elegant since then predicates such as gra/3 or argh/4 (see section 6.2.4) could be applied to
any structure and there would be no need to make arrays a special data structure.

The disadvantage of doing this is that 1t becomes necessary to modify all parts of the Prolog system
which assume anything about the internal representation of any structure. The most serious effect of this is
for open-coded unification in WAM which would get several times more complicated by taking into account
the possibility that a hairy structure may appear anywhere. In our solution above we avoid this by localizing
such effects to structures with certain reserved functors.

8.2. Cdr-coded Lists

Cdr-coded lists [Baker 78] have been proposed as an alternative to arrays and are implemented in some
Prolog systems (e.g., PLM [Dobry et al. 85]). These are lists where one or two bits per word are used to
store information about how the tail of the list can be found. Many lists with k elements can then be stored
in k words of memory instead of 2 x k£ words for normal implementation. This does not solve the problem
of how to update components of non-atomic terms efficiently. It saves memory but may well increase the
execution time of programs since traversing lists will involve more computation, although the number of
memory references 1s decreased.

8.3. Mappings

We are investigating another quite different way of integrating arrays and tables in Prolog. The idea is to
replace structures as the only non-atomic data structure by a more general kind of term: mappings, of which
structures are a special case.

A mapping is a functor together with a table. A mapping with a table whose set of keys is {1,...,n}
is a structure. The generalisation of functor/3 is domain/3 whose arguments are a mapping, its functor
and its set of keys. =../2 is generalized as compose/4 taking as arguments a mapping, its functor, its set
of keys and its set of values. apply/3 corresponds immediately to arg/3, but the first argument could be
any key, not just integers. Two mappings unify if they have the same functor and set of keys and the values
corresponding to each key unify.

General mappings would be implemented by hash tables but the special case by ordinary Prolog struc-
tures or arrays. A program not using the general mappings could be run in ordinary Prolog.

Connection Machine® Lisp [Steele & Hillis 86] has a similar device, called zappings. We will investigate
this subject further.

9. RELATED WORK

Several authors (e.g., [Eriksson & Rayner 84] and [Cohen 84]) have studied how arrays could be incorporated
in Logic Programming but little attention has been paid to how they should be made first class terms in
Prolog, although some authors may have had a solution like ours in mind.

Strings are implemented in some Prolog systems but as far as we know, they are either assumed to be
constant (i.e., atoms) or implemented inefficiently.
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[Pereira 85] introduces directed acyclic graphs—a data structure related to hash tables—in logic pro-
gramming, but does not integrate them among ordinary terms. We are not aware of any other work on hash
tables in Logic Programming, even less so on how they should fit into an otherwise austere language like
Edinburgh Prolog.

10. CONCLUSIONS

In [Barklund & Millroth 87] an implementation method was given for hash tables in Prolog. An interpretation
of them as first class terms was given for the purpose of showing that they belong in a logic programming
language. We have investigated and suggested solutions to the problems appearing when arrays, hash tables,
and other data structures which have proved useful in Computer Science are to be incorporated as first class
terms of Prolog. This is to make unification, composition and decomposition of these structures work exactly
as for ordinary structures with the straight-forward implementation.

We think mutable data structures are so important that they should be considered for inclusion in any
serious Prolog system. Making them first-class structures is non-trivial, but the methods suggested in this
paper preserve both the efficiency and the simplicity of terms in Prolog.

It may not be worth the trouble to let structure predicates and interning of atoms try to create hairy
structures when possible. This simplifies structure predicates since they will only have to worry about
decomposition of hairy structures. As hairy structures are not normally intended to be created by structure
predicates, this does not harm performance significantly. Also, since it is difficult to let open-coded unification
in compiled code construct hairy structures, this make the behaviour of structure predicates and compiled
code consistent (although this is not visible to users).

It sems that hairy structures which are implemented recursively or without any useful order between
its components, should in general have recursive corresponding ordinary structures. On the other hand,
hairy structures of a fixed size, or with a certain order between the components, should have non-recursive
corresponding ordinary structures. Examples of the former are lists and hash tables, examples of the latter
are characters, arrays, and strings. In some cases, such as strings, recursive ordinary structures would be
desirable, in such cases 1t may be worthwhile to search alternative recursive implementations of the hairy
structures.
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